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Abstract

A highly deformed, slender beam (or strip), attached to a vertically oscillating base, is used in a vibration isolation

application to reduce the motion of a supported mass. The isolator is a thin strip that is bent so that the two ends are

clamped together, forming a loop. The clamped ends are attached to an excitation source and the supported system is

attached at the loop midpoint directly above the base. The strip is modeled as an elastica, and the resulting nonlinear

boundary value problem is solved numerically using a shooting method. First the equilibrium shapes of the loop with

varying static loads and lengths are studied. The analysis reveals a large degree of stiffness tunability; the stiffness is

dependent on the geometric configuration, which itself is determined by the supported mass, loop length, and loop self-

weight. Free vibration frequencies and mode shapes are also found. Finally, the case of forced vibration is studied, and the

displacement transmissibility over a large range of forcing frequencies is determined for varying parameter values.

Experiments using polycarbonate strips are conducted to verify equilibrium and dynamic behavior.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Highly deformed elastica structures can be used to support a static load and mitigate the transmissibility of
a dynamic vertical excitation [1]. If the base is moving, the purpose of the elastica structure is to minimize the
vibrations of the supported system. If the supported system is vibrating, the purpose is to reduce the dynamic
force transmitted into the base.

In this paper, the analysis of the static response and subsequent dynamic behavior is based on the elastica
model and solutions of the resulting nonlinear boundary value problem. Convenient use can be made of
numerical solution techniques, e.g., the shooting method or finite differences, and software packages such as
Matlab [2,3]. For example, a thin beam clamped at both ends and then deformed by moving the ends toward
each other is a convenient means of varying spring stiffness, if this structure is then used to support a load. In
general, the resistance to the application of a vertical excitation depends on the geometric configuration. The
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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extent of deformation, or some other geometric aspect of the system, can then be used to tailor stiffness
behavior to achieve desirable isolator characteristics. This concept is related to a discrete analog, sometimes
referred to as a zero- or negative-stiffness system [4].

Experimental results offer some practical verification of this approach. The experiments use polycarbonate
strips supporting a mass and undergoing base excitation. It is shown that this inherently nonlinear approach
offers compelling advantages over a conventional linear-system approach.
2. Background

It has long been recognized that there are certain advantages to having a degree of control over the stiffness
elements in a vibration isolation system. For example, if the dominant frequency of the forcing changes with
time, it may be desirable to adjust the first natural frequency of the isolator.

Fig. 1 shows schematically the way in which a nonlinear stiffness might be introduced. The stiffness
characteristics may be of the hardening (part b) or initially softening (part c) type. However, the conventional
approach to designing a nonlinear spring typically involves helical springs [5] with varying pitch or diameter,
and these systems provide a limited range of flexibility, are not necessarily easy to manufacture, and (as with
other nonlinear systems) must be carefully examined in order to avoid undesirable consequences.

There have been other attempts to take advantage of nonlinearity in a vibration isolation context. A zero-
spring-rate suspension system [6] was developed in which a clever arrangement of (linear) springs acted
together such that, under pre-load, they behaved in a nonlinear geometric sense. The system is essentially the
same as a negative-stiffness mechanism described by Platus [4] and developed commercially. Other approaches
have been studied by Zhang et al. [7] and Carrella et al. [8].

Consider a highly deformed elastica structure that will support a static load and act as a vibration isolator.
Fig. 2 illustrates the type of system that will receive particular attention in this paper. The self-weight of the
loop is included in the analysis. Symmetric equilibria and motions are considered.
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Fig. 1. Example of a nonlinear spring with variable characteristics: (a) schematic, (b) linearized stiffness, and (c) a slope near zero.
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Fig. 2. A thin elastic strip with the ends pushed together: (a) geometry, (b) photographic image, and (c) alternative symmetric

configuration.
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3. Analytical formulation

The highly nonlinear elastica description is amenable to numerical solutions, including dynamic analyses for
small-amplitude motion about highly deflected equilibria [2]. The equations governing the elastic behavior of
this system are cast in terms of arc-length coordinates ðS; yÞ, with appropriate boundary conditions. They can
be solved numerically using the shooting method, including the effect of self-weight gravity loading if desired.
Suppose the initially flat beam has a length L, flexural rigidity EI, and weight (per unit length) W. As shown in
Fig. 2(a), points on the loop have coordinates X ðS;TÞ and Y ðS;TÞ, where T is time. The X-axis is parallel to
the loop at the clamped end. The internal forces in the strip are denoted PðS;TÞ and QðS;TÞ parallel to the X

and Y axes, respectively, and the bending moment is MðS;TÞ. A downward point load, F, is applied at the
apex of the loop via the mass of the supported system. A viscous damping coefficient, C, is used to model
system damping.

In the analysis of this type of system, it is convenient to nondimensionalize the length variables in the
problem using the parameter a ¼ ðEI=W Þ1=3, and to write the nondimensional length as l, where l ¼ L=a [2].
This nondimensionalization is valid for any nonzero weight per unit length, W40. The remaining
nondimensional parameters are defined by

s ¼ S=a; x ¼ X=a; y ¼ Y=a; t ¼ T
ffiffiffiffiffiffiffiffi
g=a

p
,

O ¼ o
ffiffiffiffiffiffiffiffi
a=g

p
; c ¼ C

ffiffiffiffiffiffiffi
a7g

p
=EI ; f ¼ Fa2=EI ,

q ¼ Qa2=EI ; m ¼Ma=EI ; p ¼ Pa2=EI , ð1Þ

where o is a dimensional vibration frequency. The governing elastica equations using the defined
nondimensional parameters are:

qx=qs ¼ cos y; qy=qs ¼ sin y,

qy=qs ¼ m; qm=qs ¼ q cos y� p sin y,

qp=qs ¼ �1� q2x=qt2 � cqx=qt; qq=qs ¼ �q2y=qt2 � cqy=qt. ð2Þ

Each of the variables is written in the form [9]

xðs; tÞ ¼ xeðsÞ þ xdðsÞe
iOt; yðs; tÞ ¼ yeðsÞ þ ydðsÞe

iOt,

yðs; tÞ ¼ yeðsÞ þ yd ðsÞe
iOt; mðs; tÞ ¼ meðsÞ þmd ðsÞe

iOt,

pðs; tÞ ¼ peðsÞ þ pd ðsÞe
iOt; qðs; tÞ ¼ qeðsÞ þ qd ðsÞe

iOt, ð3Þ

where the subscripts e and d denote equilibrium and dynamic components, respectively. The resulting
equilibrium equations are:

x0e ¼ cos ye; y0e ¼ sin ye; y0e ¼ me; m0e ¼ qe cos ye � pe sin ye, (4)

where a prime denotes differentiation with respect to s. The forces may be written as

peðsÞ ¼ po � s; qeðsÞ ¼ qo, (5)

where po and qo are constants.
For specified parameter values, the equilibrium shape is found, and Eqs. (3) are substituted into Eqs. (2),

using equilibrium equations (4) and (5). The resulting linearized vibration equations are:

x0d ¼ �yd sin ye; y0d ¼ yd cos ye,

y0d ¼ md ; m0d ¼ ðqd � peydÞ cos ye � ðpd þ qeyd Þ sin ye,

p0d ¼ O2xd � iOcxd ; q0d ¼ O2yd � iOcyd . ð6Þ

Eqs. (4) and (6) are solved numerically, and the results are compared with experimental results.
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4. Experiments

Thin polycarbonate strips were used in the experiments. The specific weight was 11:2 kN=m3 and Young’s
modulus was 2.4GPa. The strips were 25.4mm wide and 0.508mm thick, giving a nondimensional parameter
value a ¼ 0:167. The ends of each strip were clamped, and the base was attached to the shaker (MB Dynamics

PM50A Vibration Exciter) that moved vertically, as shown in Fig. 3. At the midpoint of the strip, a vertically
sliding mass was attached, where the mass could be varied to simulate specific point load values. For
equilibrium measurements, the vertical deflection of the strip’s midpoint was recorded for varying mass values.
To simulate negative pre-load values, fo0, the experimental system was arranged so that a mass created an
upward force at the midpoint. For dynamic measurements, a point-to-point laser vibrometer (Ometron VH300

+) was used to measure the velocities of both the loop midpoint and the base (or shaker). The resulting data
were used to generate frequency spectra. The shaker frequency was configured for a slow sine wave sweep with
frequencies from 1 to 250Hz.
5. Results

5.1. Equilibrium

Given the assumed structural symmetry of the loop (with a constraint against horizontal motion at the
midpoint, s ¼ l=2), it is sufficient to numerically analyze only half of the strip, so that 0pspl=2, where the
point load at s ¼ l=2 is f =2.

For the equilibrium solution, the nondimensional length, l, and supported system mass parameter, f, are
specified, and numerical integration is performed using a shooting method along 0pspl=2 to satisfy
xeð0Þ ¼ yeð0Þ ¼ yeð0Þ ¼ yeðl=2Þ ¼ 0, yeðl=2Þ ¼ �p=2, and peðl=2Þ ¼ f =2. The resulting vertical mass deflection
(or vertical deflection of the loop at s ¼ l=2) is called d, where

d ¼ xeðl=2Þjf¼0 � xeðl=2Þ. (7)

Solving the boundary value problem with f ¼ 0 (for the case l ¼ 2) results in the equilibrium configuration
given by the uppermost curve in Fig. 4(a). If a downward point load f is applied to the apex of the loop, the
equilibrium configuration changes. The other curves in Fig. 4(a) show static shapes for load increments of
f ¼ 10; 20; 30; . . . ; 90; 98:6. The final curve corresponding to f ¼ 98:6 gives the static configuration just before
self-contact. The second curve from the top in Fig. 4(b) corresponds to Fig. 4(a) ðl ¼ 2Þ in a plot of f vs. d. The
other curves correspond to loops of varying lengths. Each curve is continued until self-contact occurs.
Fig. 3. The experimental vibration isolation system.
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Fig. 4. Numerical equilibrium results: (a) static configurations for l ¼ 2 and f ¼ 0 (uppermost curve), 10; 20; . . . ; 90; 98:6,
(b) force–deflection curves for lengths l ¼ 1:5 (uppermost curve), 2, 2.5, 3.
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Load–deflection results for l ¼ 1:7416 are shown in Fig. 5, where the data points represent experimental
data. Note that upward loads (i.e., fo0) are included. It can be seen that for a compressive load applied at the
peak of the loop the local stiffness (slope of the load–deflection curve) can be made relatively small. The loop
spring constant is then defined as the local slope in the force–deflection relation.

Fig. 6 shows the computed initial spring constant, where now the vertical stiffness k ¼ df =dd is determined
by the length of the loop. Results are plotted for four specific pre-load values f. Not surprisingly, the longer the
loop, the less stiff it is (in the vertical direction) for a given point force. (The upright configuration of the loop
may lose stability for long lengths [2], but in this study the arc length is kept below the critical value.) Hence,
the pre-load (which might for example correspond to the dead-weight of the system to be isolated) can be used
to tailor the stiffness to a value suitable for isolation. Alternatively, the stiffness may be tailored by changing
the length of the loop. Thus the central theme of this approach is that the stiffness of the elastic springs may be
adjusted either by changing the pre-load or the overall length of the structure to achieve effective vibration
isolation.
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Fig. 5. Force–deflection curve for l ¼ 1:7416. Solid curve: numerical results; data points: experimental results.
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Fig. 6. Vertical stiffness ðk ¼ df =ddÞ as a function of length, l, for (from left to right) f ¼ 90, 50, 20, 10.
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5.2. Free vibration

Free vibration frequencies and mode shapes for the system are found using the equilibrium solution (for
given values of l and f and c ¼ 0), Eqs. (6), and the shooting method to satisfy xdð0Þ ¼ ydð0Þ ¼ ydð0Þ ¼
ydðl=2Þ ¼ ydðl=2Þ ¼ 0 and pdðl=2Þ ¼ �ðf =2ÞO

2xd ðl=2Þ. The first frequency is plotted in Fig. 7 for the four
nondimensional lengths l ¼ 3, 2:5, 2, and 1:5. For each length, the fundamental frequency is found up to self-
contact, which, for l ¼ 3 and 2:5, occurs before the system becomes unstable. When this occurs, the frequency
drops to zero, and the structure is unable to statically support the mass.

The first three natural frequencies as a function of f are shown in Fig. 8 for l ¼ 2 (up to self-contact). With
no pre-load ðf ¼ 0Þ, these natural frequencies for this case are O1 ¼ 21:13, O2 ¼ 59:59, and O3 ¼ 120:56. The
first two frequencies decrease, whereas the third frequency decreases initially, reaches a minimum at f ¼ 66:7,
and then increases for larger mass values. The corresponding loop isolator mode shapes are shown in Fig. 9
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Fig. 7. First frequency as a function of f for (from left to right) l ¼ 3, 2.5, 2, 1.5.
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Fig. 8. First three natural frequencies as a function of f with l ¼ 2.
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for l ¼ 2 and f ¼ 10 (giving d ¼ 0:021), where the dashed curve gives the equilibrium configuration. The
resulting nondimensional frequencies for this case are O1 ¼ 6:09, O2 ¼ 41:89, and O3 ¼ 98:40.

5.3. Vibration isolation

Forced vibration is considered by assuming a base excitation, uðtÞ, that is sinusoidal, i.e.,

uðtÞ ¼ uo sinOt. (8)

The nondimensional forcing amplitude, uo, is defined as uo ¼ Uo=a, where Uo is the dimensional excitation
amplitude. Numerical results may again be found by numerically integrating Eqs. (6). Here, the forcing
amplitude, uo, and frequency, O, are specified, and the shooting method is used to satisfy xdð0Þ ¼ uo,
ydð0Þ ¼ ydð0Þ ¼ ydðl=2Þ ¼ yd ðl=2Þ ¼ 0, and pdðl=2Þ ¼ �ðf =2ÞO

2xdðl=2Þ. The resulting displacement transmis-
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Fig. 10. Numerical transmissibility results for l ¼ 2, f ¼ 10, and c ¼ 0:5.
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sibility is then defined as

Tr ¼
jxdðl=2Þj

uo

. (9)

Numerical transmissibility results for l ¼ 2, f ¼ 10, and c ¼ 0:5 are shown in Fig. 10. The dynamic vibration
shapes corresponding to the first three transmissibility peaks are similar to the first three mode shapes.

Experimental transmissibility results are shown in Figs. 11 and 12, where the smooth curve represents
numerical results found using the given parameter values and c ¼ 1. Fig. 11 presents results for a
nondimensional length l ¼ 1:987, where f ¼ 29:29 in (a) and f ¼ 44:60 in (b). The natural frequencies for this
case are found numerically using the free vibration equations, giving 3.33, 50.74, and 111.45Hz for f ¼ 29:29,
and 2.13, 49.62, and 102.45Hz for f ¼ 44:60. The experimental transmissibility peaks occur at 3.68, 52.56, and
120.47Hz for f ¼ 29:29, and 2.56, 51.63, and 112Hz for f ¼ 44:60.

In Fig. 12, results for l ¼ 1:479 are plotted, where f ¼ 29:29 in (a) and f ¼ 44:60 in (b). The numerically
computed natural frequencies are 6.49, 91.93, and 214.10Hz for f ¼ 29:29, and 4.60, 91.50, and 206.19Hz for
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Fig. 11. Experimental and numerical transmissibility results, l ¼ 1:987: (a) f ¼ 29:29, (b) f ¼ 44:60.
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f ¼ 44:60. The experimental transmissibility peaks occur at 6.81, 94.25, and 222.06Hz for f ¼ 29:29, and 4.94,
94.19, and 215.88Hz for f ¼ 44:60. Although experimental peaks occur near the numerically computed
natural frequencies, anti-resonances do not appear in the experimental measurements. Because anti-
resonances correspond to very small amplitudes of motion, experimental measurements at these frequencies
are more vulnerable to noise, making such local minima difficult to detect [10].

In both the numerical and experimental results, there is a considerable attenuation of the transmissibility for
forcing frequencies above the first resonance, and this resonant frequency can be tuned by either altering the
loop length or static mass of the system.

In the experimental results for each case, there are some additional transmissibility peaks that do not appear
in the numerical results. These peaks may correspond to vibration shapes with rotation at the midpoint
(where, in the analysis, it is assumed that yðl=2; tÞ ¼ �p=2). The attachment point of the mass also has a finite
width in the experiments, whereas the analysis assumes that this force is applied as a point load. Finally, there
may be some asymmetry in the experimental system due to an error in the attachment point location
of the mass.
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L.N. Virgin et al. / Journal of Sound and Vibration 315 (2008) 721–731730
While in this case the mass motion is constrained to be purely vertical, the pinched loop isolator system is
one that may also be studied as a horizontal motion isolator or even a system that isolates motion in both
directions simultaneously. This system characteristic makes the pinched loop isolator particularly
advantageous over a helical spring system, where the motion must be limited to be exclusively in one direction.
6. Conclusions

The concept of using highly deformed continuous elastic structures as spring elements in a vibration
isolation context was studied. The pinched loop was considered, and governing equations were derived using
an elastica analysis. With the assumption of symmetry, the equations were solved numerically using a shooting
method to satisfy the boundary conditions. Equilibrium configurations and in-plane free and forced vibrations
were examined. The mass (applied at the midpoint of the loop) and the loop length were varied.
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If the mass is fixed and the length is increased, the loop becomes less stiff vertically. Increasing the mass and
fixing the length also produces a decrease in the stiffness. By changing the loop length and/or the system mass,
the stiffness may easily be adjusted. The first natural frequency of the system, then, changes significantly
depending on the system parameters. This frequency was found numerically for varying lengths and masses up
to self-contact. Numerical displacement transmissibility results indicate that the system is an effective isolator
for forcing frequencies beyond the first natural frequency. Experimental data agreed well with the analytical
results.

Although the governing equations are somewhat more difficult to solve than the equations governing linear
springs, the solutions are essentially exact. By appropriate adjustment of system parameters, the pinched loop
provides a viable means of isolating a mass from a vertically oscillating base.
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